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Abstract: Predictive controllers based on model-based generalized Predictive algo-
rithm gain significant and widespread application in industrial process control. 
Predictive control can assume all relations in a controlled system and can design so-called 
centralized control actions. In spite of its incontestable advantages, this control can 
cause occurrence of steady-state errors. It is happened not only when penalizations 
in design criterion of predictive control are nonzero but also e.g. when unmeasured 
disturbances occur. This paper deals with one possible solution based on incremental 
modification of state-space Predictive algorithm with state-space Kalman filter 
estimation. The algorithms of this combination are presented in square-root form. 
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1. INTRODUCTION 
 
Predictive controllers based on model-based generalized Predictive algorithm (Ordys et al. 1993) 
can offer more powerful control actions than standard PID-based controllers and therefore 
they gain significant and widespread application in industrial process control. Their basic formu-
lation can be adapted, without difficult modifications, directly for multi-input multi-output 
(MIMO) systems. 
 
Conventional use of PID-based controllers for MIMO systems represents taking the systems 
as a set of single-input single-output units (setSISO) with independent (decentralized) control 
in their appropriate loops (Belda et al. 2001). Internal relations in the controlled MIMO 
system are assumed as outside disturbances. The use of PID based controllers may generally 
provide control, but it need not achieve good results, mainly in case of dynamically non-
uniform systems. Moreover, it is not applicable for under or over actuated systems, where 
the knowledge of some model, representing system decoupling, is necessary. 
 
On the other hand, Predictive control design, which is based on some model representation 
(model-based approach), can assume, just by model, most of all relations in a controlled 
system. The Predictive control can be applied not only for adequately actuated systems, 
but also for under and over actuated systems. Through the model, it can design more suitable 
control actions that closely correspond to actual requirements (desired values). Against 
independent (decentralized) PID controllers, it represents global, so-called centralized control 
design (Belda et al. 2003). 
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In spite of incontestable advantages of predictive control design, such control can cause, 
in general point of view, occurrence of steady-state errors (Belda et al. 2004). It is happened 
not only when absolute values of control actions are penalized in the criterion of predictive 
design, but also when unmeasured disturbances or real passive resistances – insensitivities 
occur. This paper deals with one possible solution based on incremental modification of state-space 
Predictive algorithm supported with state-space Kalman filter estimation. 
 
The paper is organized as follows. In section two, the construction and modification of state-
space model for incremental algorithm is shown. The third section deals partly with the equa-
tions of prediction and partly with predictive control design derived in square-root form. The next 
section, section four, concerns with the question of achievability of new state vector 
following from incremental model modification. For solving this question, the observer based 
on Kalman filter is used (Anderson et al. 1979). Two observer structures are considered. 
Design of observer gain is formulated also in square-root form. Finally, the section five 
concludes the paper. 
 
 
2. MATHEMATICAL MODEL AND ITS MODIFICATIONS 
 
Mathematical models represent important prior information in process of control design. 
Let us proceed from ordinary used mathematical model – ordinary differential equation 
generally of nth order 
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The model of the system is represented either by single equation (1) in case of single-input 
single-output (SISO) systems or by set of equations for multi-input multi-output (MIMO) 
systems. Generally, these cases can be written in state-space form (2) 
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Due to digital realization in practice, the models are discretized to a form 
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The discrete state-space model (3) is suitable form for design based on Predictive control 
algorithms. In order to constitute (build in) incremental character to predictive algorithms 
generally both for static and astatic systems, one of possibilities is to use the following simple 
modification of state-space model (3) 
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State-space model (4) after condensing (5) has the same form as notation (3) (Belda 2005). 
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That modification can ensure consecutive change of control actions in spite of cases of static 
systems without possibility to measure ideal system state; (i.e. only disturbed state (output) 
is available). In case of astatic systems, this modification can solve model inaccuracies 
from reality, as well physical insensitivities (passive resistance, mechanical backlashes etc.). 
Finally, the incremental modification removes loss effect at penalization of control action 
in design criterion. 
 
 
3. PREDICTIVE CONTROL DESIGN 
 
Generalized predictive control belongs with linear quadratic control to multi-step approach 
(Ordys et al. 1993). It combines both feed-forward part and feed-back part. The feed-forward 
part is represented by prediction via mathematical model describing a controlled system. This 
part forms the dominant part of control actions. The feed-back, closed from measured 
outputs, compensates some inaccuracies of the model and certain bounded disturbances. 
 
The design consists in local minimization of the criterion expressed by quadratic cost 
function. In it, the predictions, given by equations of prediction, are involved. The following 
subsections outline this approach of model-based design of control. 
 
 
3.1 Equations of predictions 
 
The prediction is fundamental part of the design. It can define the character of the algorithm 
(Ordys 1993, Belda 2005). May the following algorithm types are considered 

• basic algorithm, generating full control actions; 
• incremental algorithm, generating the increments of control actions. 

Basic algorithm generates directly appropriate values of the actions, i.e. their full (absolute) 
values. The algorithm arises from the model (3). On the other hand, incremental algorithm 
generates only increments of the control actions, which are counted for absolute values 
applied to the system. 
 
The prediction for both algorithms leads to the repetitive insertion of state-space formula (3) 
or (5). (Note: For simplicity, in further text, the symbol )(⋅  will represent simultaneously both basic 
and incremental state model matrices, and symbol )(.  will mark also simultaneously either full 
values of control action or its increment, respectively.) 
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In condensed notation, equations of prediction are 
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3.2 Minimization of the design criterion 
 
Design criterion is defined for certain interval of predictions (several steps to future). It includes 
the part of control error, in which the model of system is covered (insertion of equations 
of prediction (7)) and part of control actions, where the input energy (control actions) 
is weighted. This part redistributes control errors to individual steps of predictions and pro-
vides coupling within interval of predictions. Usual form of the criterion for predictive design 
is written as follows 
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The criterion is expressed in step k. N is a horizon of prediction, No is a horizon of initial 
insensitivity and Nu is a control horizon. Qy and Qu are output and input penalizations 
and y(k+j) and )(. u(k+j −1) are output and input (full or incremental) values. The control actions 
are obtained by minimization of described criterion (9), which can be simply rewritten to the follo-
wing matrix product 
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where y)  is a vector substituted by the equation (7) (time step k+1, · · ·, k+N), w is a vector of 
desired values, corresponding to vector y)  and )(. u is a vector of designed future inputs, again 
in discrete time instants for the whole horizon (k, · · ·, N - 1). The product (9), as it is indi-
cated, can be decomposed in so-called square roots of the criterion. From mathematical point 
of view, the minimization of the square root gives straightforward direction for practical use. 
If the square root of the criterion on the right side is selected and expression of prediction (7) 
is inserted in this square root, then the new criterion is given 
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J is a column vector and its Euclidean norm equals a cost of the square root of the criterion (9). 
The objective is to search for such )(. u, which minimizes the square root (10); which means, 
that )(. u minimizes the norm |J|, and thus as well the criterion (9). In case of square root (10), 
the minimization leads to a system of algebraic equations with more rows than columns – 
over-determined system 
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For optimization of the criterion, the orthogonal triangular decomposition (Golub et al. 1989) 
is used. It reduces excess rows of matrix A [(2·N·i)×(N·i)] and elements of vector b [2·N·i] 
(i is a number of inputs of controlled system) into upper triangular matrix, which makes 
possible to compute the control )(. u directly by backward substitution. 
 
Finally, let us note how to construct real control actions at incremental algorithm: after 
computing of vector )(. u for whole horizon, only first control )(.)( ku  is used (as at basic 
algorithm) and for obtaining the full control actions the second line of equation (4) is used. 
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4. STATE-SPACE ESTIMATION 
 
When using Predictive control in the state-space formulation and generally at the use of whichever 
state-space control, it is necessary to solve the question of availability of the state of the system 
(state vector). If it is not available and only system outputs from the measurement are known, 
then some state-space estimation has to be considered. Suitable, well-known solution of such 
estimation is the state-space observer based on Kalman filter (Anderson et al. 1979). The deter-
mination of its gain will be the main objective. It will be demonstrated in square root form – opti-
mal way for real-time use. 
 
Consider a linear or linearized, discrete multi-input multi-output system defined by (3) or (5). 
The Kalman filter is designed such that the estimate X̂ of the state X  is ‘best’ in the sense of mi-
nimum of the error covariance matrix for the considered estimate – the best estimate given by 
the minimum variance estimates (Billings 1980). That is, the estimate X̂  is to be determined so that 
 

 minimum))ˆ()ˆ((trace →−− TE XXXX  (12) 
 
where )(trace ⋅E  is conditional error variance associated with the estimate X̂  and conditional 
mean estimate minimizes this error variance; X  is a random state vector, which is to be 
estimated from measurement – a random vector Y  with mean value y  and altogether with joint 
covariance matrix 
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Then the conditional probability density with knowledge of y (measurement) can be written 
 

       

state  theofdimension  a is  and
outputs ofnumber  a is    where

  

 

1

2

1

2/12/

2/1

1

2

,
||)2(

1

||)2(

)2(

1
)(

),()|(

2/11

)ˆ()()ˆ(
2
1

)()(
2
1

][
2
1

||

N
n

yxyyxyxx

e

e

e
p

pp

yxyyxyxx

yy

yy

TT

N

TT

n
TTTT

nN

ΣΣΣΣ

ΣΣ

Y
YXYX

XXΣΣΣΣXX

yYΣyY

yY
XXyYXX

Y

XY
YX Σ

−

−−−−

−−−

⎥⎦
⎤

⎢⎣
⎡

−
−−−−

−
=

===

−

−

−

+

π

π

π
 (14) 

 
with mean  )()|()(ˆ 1 yYΣΣXYXYX −+== − yyxyE , (15) 

and covariance  yxyyxyxx ΣΣΣΣYXΣ 1)|( −−= . (16) 
 
In the expressions (15) and (16), the marginal covariances are expressed in general 
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To obtain combined (time + measurement) update, the initial form of covariance is  
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The expression (19) can be decomposed to the product of square roots 
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where R, Q and S are square roots of R Q and Txx SS=Σ ; kfg is a searched observer gain. 
 
Finally, the equations of estimation (equations of state observer) can be written. They can be 
formulated either as a single equation of estimation (22) for kk ,1)( +⋅X

)  
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or as a two equations (23) and (24) used separately for kk ,)(⋅X

)  and kk ,1)(ˆ
+⋅X  (Billings 1980) 
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5. CONCLUSION 
 
This paper deals with incremental modification of model-based control based on discrete state-space 
generalized predictive algorithm and briefly summarizes the solution of state-space estimation. 
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